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Abstract--This paper shows that the power output of various power plant configurations can be maximized 
by properly dividing the fixed inventory of heat exchange equipment among the heat transfer components 
of each plant. This conclusion is built over a sequence of fundamental power-maximization problems : the 
solar power plant with total area constraint, the solar power plant with storage by melting, the power plant 
with two heat exchangers and total area constraint, the combined-cycle power plant, the power plant 
viewed as an insulation between its heat source and heat sink, and the power plant with by-pass heat leak 
to the ambient. New diagrams are reported for the power plant at maximum power, and the refrigeration 

plant at maximum refrigeration load. 

1. INTRODUCTION 

During the last two decades, entropy generation min- 
imization emerged as a distinct subfield in heat trans- 
fer engineering. Its development was reviewed in two 
books [1, 2] and is not reviewed again here. The 
method consists of the simultaneous application of 
heat transfer and engineering thermodynamics prin- 
ciples, for the purpose of creating realistic models 
for heat transfer processes, devices and large-scale 
installations. By 'realistic' I mean models that account 
for the inherent irreversibility of the heat and fluid 
flow processes and that are always involved in the 
operation of suc~L devices. 

The importance of the entropy generation min- 
imization method is stressed by the emergence of a 
parallel current in physics. The latter is usually traced 
to a 1975 paper by Curzon and Ahlborn [3] who 
maximized the instantaneous power output of a heat 
engine with heat transfer irreversibilities (finite heat 
exchangers) at the hot end and the cold end. Accord- 
ing to the Gouy-Stodola theorem [1], the max- 
imization of the power output is the same as the min- 
imization of the rate of entropy generation of the 
power plant. The physics work that followed in the 
1980s is commonly referred to as finite time thermo- 
dynamics [4], in which, again, the method consists of 
the simultaneous application of engineering thermo- 
dynamics and heat and fluid flow. 

The commonality of the engineering and physics 
currents is further' illustrated by the fact that Curzon 
and Ahlborn's efficiency for maximum power was 
reported almost two decades earlier in engineering by 
Novikov [5]. It is interesting that Novikov's version 
of power plant analysis (steady state, instead of the 

stroke-by-stroke analysis of Curzon and Ahlborn) 
became a classroom topic in engineering textbooks [6, 
7], and is now the preferred analysis for demonstrating 
the maximum power principle (e.g. ref. [2]). Inter- 
esting also is that the model of a steady power plant 
with two finite heat exchangers was proposed inde- 
pendently in ref. [1], p. 146. 

A new step in the maximization of the power from 
plants with heat transfer irreversibilities occurred in 
the first part of this study [8], where it was shown that 
in addition to the power maximization principle of 
Novikov and Curzon and Ahlborn, the power can be 
maximized by properly balancing the sizes of the two 
heat exchangers. This balance is an important thermal 
optimization principle, because the finiteness of the 
total heat exchanger inventory is a relevant constraint 
in the overall design of the power plant. 

The objective of this second part of the study begun 
in ref. [8] is to examine the effect of the heat exchange 
inventory constraint on the thermodynamics of 
several fundamental configurations : 

(a) the power plant with solar collector and cold- 
end heat exchanger; 

(b) the power plant with solar collector and phase- 
change storage ; 

(c) the power plant with hot-end and cold-end heat 
exchangers ; 

(d) the combined-cycle power plant ; 
(e) the power plant viewed as an insulation layer 

between its heat source and the ambient ; and 
(f) the power plant with by-pass heat leak to the 

ambient. 

This sequence is complemented by two new diagrams 
for illustrating the operation of a power plant at 
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NOMENCLATURE 

A area [m 2] r/ efficiency, equation (45) 
Ce specific heat at constant pressure q~ efficiency, equation (52) 

[J kg -1 K -I] ~ dimensionless temperature, T/To. 

C~ internal conductance (insulation) 
[W K -l]  

(7~ dimensionless conductance, equation 
(54) 

k~ effective thermal conductivity Subscripts 
[W m -1 K -1] c collector 

L~ thickness of internal conductance C Carnot, or reversible compartment 
(insulation) [m] H high temperature 
mass flowrate [kg s-  ~] i internal conductance 

q" heat flux [W m -2] L low temperature 
Q heat transfer rate [W] m melting 
T absolute temperature [K] m maximized once 
U overall heat transfer coefficient mm maximized twice 

[W m -2 K-1] mmm maximized three times 
W power output [W] M middle temperature 
if" dimensionless power output opt optimal 
x, y area allocation fractions out outlet 
x distance along the internal s from the sun 

conductance [m]. st stagnation 
0 ambient 

Greek symbols 1 high temperature cycle 
a angle, Fig. 7(a) 2 low temperature cycle. 

maximum power, and refrigeration plant at maximum 
refrigeration load. 

2, SOLAR POWER PLANT WITH TOTAL AREA 
CONSTRAINT 

Consider first the maximization of the power output 
of a plant whose working fluid is heated to T~ in a flat 
solar collector of area Ac. In the model of Fig. 1 the 
solar collector is shown separately in order to illustrate 
the heat loss to the ambient : 

Qo = UcAc(T~-  To) (1) 

and the fact that the heat delivered to the power cycle, 
Qc, is smaller than the heat absorbed from the sun, 
Qs = q"Ac, 

Qc = Q~-  O0. (2) 
The overall heat transfer coeffient Uc accounts for the 
convective heat loss to the ambient [9], or for com- 
bined convection and radiation when radiation is not 
the dominant heat transfer mechanism [10]. Another 
way of expressing the model of equations (1), (2) is 
[11]: 

T ~ -  T¢ 
Qc = Q s - -  (3) 

T s t -  To 

collector ~ s  Qe 

~ 0 

TL 

Tc 

power cycle 
(C) 

~W 

heat ~ 7  [ -  
exchanger QL 

AL, U L 

To 

Fig. 1. Power plant model with cold-end heat exchanger and solar collector with loss of heat to the ambient. 
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where T~t is the stagnation (maximum) temperature 
of the collector, 

q "  

Tst  = T o  + Ucc ( 4 )  

and q" = QUAc. On the right side of equation (3), the 
ratio (T , t -  T~)/(Tst-  To) is the collector effÉciency q~. 

The right side of Fig. 1 shows the rest of the solar 
power plant, q-his consists of the cycle executed 
between T¢ and TL by the working fluid, and the heat 
exchanger between the cold end of the cycle and the 
ambient. We assume that the cycle is internally revers- 
ible, 

W = Q<-  QL (5) 

Qo Q~ 
(6) 

T o -  TL" 

The heat exchanger size is described by the heat trans- 
fer area AL and the overall heat transfer coefficient 
UL. In accordance with equation (1), we assume that 
the heat rejected to the ambient is proportional to the 
driving temperature difference : 

QL = ULAL(TL -- To). (7) 

Since A~ and AL account for the physical sizes of 
the flat plate collector and cold-end heat exchanger, 
we complete the model with the size constraint : 

A =: A~+AL (constant). (8) 

The constraint may be expressed in terms of an area 
allocation fraction x, 

A~ :-- ( 1 - x ) A  A L = xA.  (9) 

It is possible to combine equations (3) and (5)- 
(9) to derive the following expression for the power 
output, 

= U~( 1 - -  X ) ( ~ s t - - " C c )  if, 

U c  - 1 [, l),,t-,>l } ,10> 
where 

w To T,< (11) 
~/=UL~/~T 0 "Cc = T0 "Cst - -  T o  • 

The dimensionless power if" emerges as a function of 
four parameters (UUUL, %t, % and x), out of which % 
and x are degrees of  freedom. The collector tem- 
perature % can be varied by varying the flowrate of 
the working fluid circulated through the collector. The 
fraction x varies as AL and Ac change while the total 
area A remains constant. 

We first maximize IF" with respect to z~ by solving 
OffTO% = 0. The result is the optimal collector (or 
engine hot end) temperature : 

~li= + T , , ( x - '  - 1)GIUI~ 
*<,or,, = 1 + ( x  - l  - 1)UolGL 02) 

with the corresponding maximum power 

x(1 - x) uo/VL 
ff'm = x + ( 1 - x ) U o t U L  cst(1-*~t '/2) 2. (13) 

Worth noting is that the optimal collector temperature 
~.x12 agrees with reported in ref. [9], namely %.opt . . . . .  

the U~/UL-"* 0 limit of  equation (12). Indeed, in ref. 
[9] it was assumed that the cold end of the power cycle 
is in thermal equilibrium with the ambient, TL = To, 
which, when A is fixed, means that UL is infinite. 

In the second step we maximize I~,  with respect 
to x;  solving 0 I~/Ox = 0 we obtain the optimal area 
allocation ratio" 

1 
Xop, - 1 + (uuuo) ' / :"  (14) 

Substituting x = Xopt into equation (13) we obtain the 
twice-maximized power output : 

•mm ~- "~,t - -  (15) 
(U,_lUo) '/2 + 1 

A more descriptive alternative to equation (14) is the 
optimal area ratio : 

pt 1 - - X o p  t ~k eL/] 

which shows that when the collector is insulated well 
against the ambient (Uc << UL) the optimal collector 
size is greater than the size of the cold-end heat 
exchanger of the power plant. Written as 

Ulc 12 Ac,op  t = 0l/2 a L , o p t ,  

equation (16) is qualitatively the same as the rule of  
the equipartition of thermal conductance inventory, 
(UA)H = (UA)L, which governs the maximization of 
power production in engines with two heat reservoirs 
[8], and the maximization of refrigeration load in 
refrigerators with two heat reservoirs [12-14]. 

3. SOLAR POWER PLANT WITH STORAGE BY 
MELTING 

Consider now the proposal to store temporarily 
the collected solar energy by melting a phase-change 
material. As shown in Fig. 2, this can be accomplished 
by heating a stream (m) inside the collector, and using 
this stream to melt a material at the melting point Tin. 
The surface of the melting material is A m and the heat 
transfer coefficient based on Am is Ur,- As in refs. [15- 
17], we assume that above the melting material the 
hot stream is well mixed at the outlet temperature 
Tout. The collector model continues to be described by 
equations (1)-(4). 

It was shown in ref. [17] that the simplest way to 
evaluate the potential power output associated with 
melting a certain amount of material at Tm is by con- 
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ro, m 
collector ~ s  

- I I 
Tc L_ Ac ' Ue +o 

To 

• < - / e  ..?.'¢ ,;... .% ~-.?: ] 
D, '& '":' T°ut ::" I 

Tm ~ / / , ~ Q m  

power cycle 

Fig. 2. Power plant model with solar collector and energy storage by melting. 

Tou t 

~ W  

sidering the internally reversible power cycle drawn 
under the Am surface in Fig. 2. The steady state pre- 
vails when the heat input to the power cycle (Qr,) 
matches the heat transferred from the hot fluid (Tout) 
to the melting surface (Tin) : 

Qm =rilcp(Tc-Tout)= UmAm(Tout- Tm). (17) 

The heat input Qm and the instantaneous power out- 
put W =  Qm(1-To/Tm) can be estimated by eli- 
minating Tou t between equations (17). The result is : 

U m A m  ( 7 ' ° ) ( 1 8 )  
W -- 1 -I- U m Am/(l~/Cp) (T~-- T~) 1 -- Tram " 

Maximizing W with respect to Tm we find : 

Tm,op t = (ToT~) 1/2 (19) 

U m A m To(1 -- zS- 1/2)2 
W m = (20)  

1 -~- U m A m / ( m c p )  

The optimal melting temperature of equation (19) 
agrees with the conclusions reached in studies 
focussed specifically on the phase-change storage pro- 
cess [18, 19]. There are two new aspects to consider in 
the present problem: the collector temperature can 
vary in accordance with the flowrate, 

Q~ = rhcp(T~-To)+U¢Ac(T~-To) (21) 

and the total heat transfer area is constrained, 

A = A c + A  m (constant) (22) 

or 

h c = (1 - - y ) A  A m = y A ,  (23)  

Combining equation (20) with equations (4), (21) 
and (23), we rewrite the once-maximized power out- 
put as 

i~ m _ W,, (~'~t-vc)(z~/2 -- 1) 2 (24) 
U~ATo z~-I "Cst - -  r c + 

1-y  yW~/W~ 

This expression can be maximized again, this time 
with respect to y and the results are 

~mm p t -  Yopt  \z~t--z¢ U~/ (25) 

~mm = (~Tst--Zc)(T~X/2 -- 1)2 (26) 
[ (~ ' c -  1) I/2 "~(Uc/Orn)  1/2 (~'st--~c)112] 2" 

Finally, the I~mm expression can be maximized 
numerically with respect to the collector temperature 
%. As shown at the bot tom of Fig. 3, the optimal 
collector temperature depends on zst and the ratio 
UdUm : however, the UdUm effect is weak. The effect 
of the stagnation temperature is stronger and, as an 

.rl12 approximation, ~Tc,op t varies as -st . This last feature 
agrees with the conclusion reached in ref. [9] where 
the collector was coupled with a reversible power 
cycle. The upper port ion of Fig. 3 shows the cor- 
responding power output, which has been maximized 
three times, ff'mmm- The power output  increases as the 
stagnation temperature increases and as the collector 
heat loss coefficient decreases. 

Substituting zc = Zc,opt into equations (25) and (26) 
we obtain the optimal area allocation fraction shown 
in Fig. 4. The heat transfer coefficient ratio has a 
noticeable effect, while the effect of  the stagnation 
temperature is negligible. The figure shows that more 
area should be allocated to the collector when the 

0.I 

0.01 

"~ Dpt 

~ t  = 2.5 

%t = 2.5 
2- 

1.5 I 
! 

0 ,001  a i i a i , i , , i i I i i I i i 

0.01 0.1 
U¢ / Um 

Fig, 3. The optimal collector temperature and the maximum 
power associated with storing solar heating by melting. 
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1 

& 

col lector ,  I - Yopt = 

0 .5  

Yopt "rst = 2 .5  
/ / ~ l e m e a t ,  Yopt = ~ ~ "  

/ 

O [ I I I I I I I I I ~ I I I I I , I 

0.01 0.1 

U ~ I U ~  

Fig. 4. The optimal allocation of heat transfer area for the 
phase-change storage of solar energy. 

collector heat lo,;s coefficient Uc decreases relative to 
Um. It is worth noting that the Yopt(~s,, Uc/Um) curves 
do not  agree wi~:h the 'rule of thumb'  that may be 
inferred (wrongly) from ref. [8], according to which 
the opt imum is characterized by thermal conductances 
of equal size. In the present case, equal thermal con- 
ductances means UcAc = UmAm, ory  = (1 + Um/Uc)-~, 
which agrees only qualitatively with the yop, curves 
plotted in Fig. 4. 

4. POWER PLANT WITH TOTAL AREA 
CONSTRAINT 

The observation made in the preceeding paragraph 
raises a question concerning the equipartit ion of the 
thermal conductance inventory, when, as the opti- 
mization rule found in ref. [8], 

1 
(UnAn)op, = (ULAL)op, = ~ UA. (27) 

This rule is based on the power plant model of Fig. 5 
and the assumption that the total thermal con- 
ductance is constrained, 

UA = OHAH+ ULAL (constant). (28) 

The power plant operates between TH and TL, and 
has three sources of irreversibility : the hot-end heat 
exchanger, QH = UHAH(TH--THc), the cold-end heat 
exchanger, QL = ULAL(TLc--TL), and the internal 
heat leak througl~ the power plant, form TH to TL, 
namely Qi = Ci(TH-- TL), where Ci is the thermal con- 
ductance of the power plant as an insulation between 
TH and TL. The pieces of hardware that contribute to 
C~ are reviewed in ref. [8]. 

The question we consider in this section is whether 
the design rule (27) changes if the thermal con- 
ductance constraint (28) is replaced by a constraint of  
type (8) and (22), namely the total area constraint : 

A = AH+AL (constant). (29) 

By repeating the analysis detailed in ref. [8], it is easy 
to show that the power output  of the plant is max- 
imized when : 

J~ QHc 

(C) 

T H  

T H C  

T L C  

T L  

W 

Fig. 5. Power plant model with three sources of irreversibility 
[81. 

i An,opt _ 1 + (A = constant). (30) 
A 

Equation (30) is shown with solid line in Fig. 6. We 
see that a larger fraction of the area supply should be 
allocated to the heat exchanger whose overall heat 
transfer coefficient is lower. 

It is interesting to compare this last conclusion with 
the optimal design based on constant  UA. Equation 
(27) is the same as : 

A = 1+ (UA = constant) (31) 

which is shown with dashed line in Fig. 6. The new 
conclusion made visible by Fig. 6 is that the optimal 

1 

AHAOPt 

0.5  

UA = c o n s t a n t -  ~ . _ ~ _ 

0 i i i i r I l l l  I I I I , l i ,  

0 . l  1 l 0  

U L  

Fig. 6. The effect of the heat exchanger inventory constraint 
(UA vs A) on the optimal allocation of heat transfer area 
between the two heat exchangers of the power plant of 

Fig. 5. 
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area allocation ratio for fixed UA is qualitatively the 
same as the ratio recommended when A is fixed. Rela- 
tive to the A constraint, however, the use of the UA 
constraint tends to exaggerate the inequality between 
AH,op t and ME,op t. 

It is worth pursuing the A constraint one step 
further. It can be shown that the twice maximized 
power output that corresponds to the optimal area 
allocation ratio (30) and the optimal temperature 
ratio of Novikov, Curzon and Ahlborn, 
(rnclTLc)op, = (TnlTE) 112, is 

U, UL A TL wmo,- F(r"VJ2-1. (32) 
(~2 + uU2)2 L\7~ ) 

Let us suppose that we have the means to augment 
only one of the heat transfer processes (Un or UE) by 
a certain small increment e, such that the augmented 
coefficient is ( l+e )Un  instead of UH, or ( l + e ) U  L 
instead of UL. The question is where should we direct 
the augmentation effort and investment, at the hot 
end or at the cold end [1]? 

Consider the two alternatives. First, we replace U. 
by (1 + e) UH in equation (32), and obtain a new power 
output that we label WH. Second, if we substitute 
(1 +e)UL in place of UL in equation (32) we obtain 
another power output, WE. Dividing the two results, 
and invoking the limit e ~ 0 we obtain : 

w .  1 --(U./tJE) '/~ 
- -  ~ -  1 + ( 3 3 )  
We - I +(UH/UD '/2 ~ 

which shows that WH > WE when UH < UL, and that 
Wn < WE when UH > UL. We conclude that the aug- 
mentation effort must always be directed at the heat 
exchanger with the lower heat transfer coefficient. 

5. GRAPHIC REPRESENTATION OF THE 
OPTIMAL ALLOCATION OF HEAT EXCHANGE 

EQUIPMENT FOR MAXIMUM POWER 

At this point a description of a new diagram that 
illustrates the functioning of the power plant of Fig. 
5 under maximum power conditions will be given. 
Figure 7(a) was reported in ref. [8], where it was shown 
that, if the power output is maximized with respect 
to (i) the temperature ratio of the inner (reversible) 
compartment, i.e. THe~TEe = (T~/TL) 1/2, and (ii) the 
allocation of thermal conductance, i.e. equation (27), 
the four temperatures (TH, THe, TEe, TL) are such 
that : 

TH -- Tnc TLC -- TL 
- -  tan a. (34) 

THc TEC 

The angle a is an Important parameter that depends 
only on the overall temperature ratio of the power 
plant, 

I--(TEITH) 1/2 
tan ~ -- 1 + (TL/TH)~lz" (35) 

Note further that t ans  = r//(2-r/), where r/ is the 
efficiency of the twice optimized power plant, 
rt -= 1 - (TLITH) ~/2. 

New in Fig. 7 are the second and third drawings, 
which show the flow and augmentation of entropy as 
the entropy flows through the power plant. These 
drawings correspond to the limit C, ~ 0, where the 
irreversibility of the power plant of Fig. 5 is due almost 
entirely to the two heat exchangers. The abscissas of 
these new drawings show the entropy transfer rate 
Q/T as it progresses toward lower temperatures 
through the engine. 

Figure 7(b) shows that the Q/T stream starts as 
QHITH as it enters the power plant at Tn. It is then 
augmented by an amount dictated by the angle ~, as 
it flows across the first heat exchanger. Across the 
inner compartment, the entropy stream remains 
unchanged, QH/THc = QL/TEc. Finally, across the 
second heat exchanger, the entropy stream is aug- 
mented again by the irreversibility of the transfer of 
QL from TLC to TL. This second augmentation too is 
dictated by ~. 

The analysis that stands behind the construction 
of Fig. 7(b) is omitted for the sake of brevity. The 
analytical version of this figure can be deduced from 
the drawing, for example by noting that 
Q~ITHc = (QulTH)(l +tancO. The construction of 
Fig. 7(b) begins from the top of the drawing, by sel- 
ecting the unit horizontal length Qn/TH. The con- 
struction progresses downward in the direction indi- 
cated by the arrows. The construction ends at point 
M: note that point P must be selected on the hori- 
zontal line such that the arc NM meets the line RM 
at M. 

Figure 7(c) is a symmetric version of the entropy 
stream constructed graphically in Fig. 7(b). The con- 
tribution of Fig. 7(b) and (c) is to show that the power 
plant is a system through which entropy flows from 
the hot end to the cold end. The entropy stream 
increases as it traverses the heat exchangers : however, 
the larger of the two increases occurs across the cold- 
end heat exchanger. This is somewhat unexpected, 
because the cold-end heat exchanger has the smaller 
temperature difference (TLc- T L < Tu -- Tnc) and the 
smaller heat transfer rate (QL < QH). 

6. GRAPHIC REPRESENTATION OF THE 
OPTIMAL ALLOCATION OF HEAT EXCHANGE 
EQUIPMENT FOR MAXIMUM REFRIGERATION 

Consider briefly the corresponding entropy stream 
diagram for a refrigeration plant that operates 
between the load level TL and ambient TH. According 
to the model used in refs. [12] and [14], the irrever- 
sibility is due to the two heat exchangers, QE---- 
ULAL(TL-- TEe) and QH = UHAH(THc-- TH), where QE 
and QH are the refrigeration load and the heat rejected 
to the ambient. It was shown [12, 14] that when the 
total thermal conductance inventory is constrained, 
cf. equation (28), the refrigeration load is maximized 
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TH 

THC 

TLC 

TL 

QH/TH 

QH / THC 

R ~  QL/TLC 

/ 
N 

" Q / T  

flow 
of 

entropy 

\ 

a b c 

Fig. 7. The flow and growth of the entropy stream through a power plant operating at maximum power output. 

if the thermal cc,nductance is divided evenly between 
the two heat exchangers, cf. equation (27). This opti- 
mization rule is the basis for Fig. 8(a), which is 
reported here fo:: the first time. This figure shows the 
positions of  THC, Tri, TL and TLC on the absolute 
temperature scale such that (THc-TrO/THc = 
(TL-- TLc) / TLc. 

Figure 8(b) illustrates step-by-step the evolution of 
the entropy stream as it flows and grows through the 
refrigeration plant. The construction begins with the 
unit length QUITE drawn horizontally at the level TL. 
It ends at point M. The entropy stream experiences 
its first increase through the cold-end heat exchanger. 
It then flows upward, and at constant strength, from 
TLC to Tuo It experiences a second and larger increase 
through the hol-end heat exchanger. The entropy 
stream was redrawn in Fig. 8 as a ribbon that is bent 
twice, at TLC and Tnc. Again, the stream starts at TL, 
and arrives significantly larger at Tw The entropy 
stream flows upward (i.e. toward higher temperatures) 
through the reversible compartment of  the refriger- 
ation plant, and downward through irreversible com- 
partments (the two heat exchangers). 

7. COMBINED-CYCLE POWER PLANT 

Now we focus on another interesting extension of 
the double maximization of the power output en- 

countered in the study of Fig. 5. That power plant 
model is repeated in Fig. 9(a), where it is assumed that 
the internal conductance irreversibility is negligible 
(Ci = 0). The question we address is how to maximize 
the total power output of a combined-cycle power 
plant that operates between the same temperatures 
(TH, TL) and uses the same heat exchange inventory 
as the original plant. In the combined-cycle power 
plant of Fig. 9(b) there are three heat exchangers, 

UA = UH A .  + UM A~ + UL AL (constant) (36) 

and two internally reversible compartments, the high 
temperature cycle between THI and TL~, and the low 
temperature cycle between TH2 and TL2. 

The optimization of the power plant cascade of  Fig. 
9(a) was also considered by Rubin and Andresen [20]. 
The new aspect considered in this section is the UA 
constraint (36), and the optimal allocation of the UA 
inventory between the three heat exchangers. 

This problem can be solved analytically in two 
steps. In the first step we assume that the temperature 
level TL1 is fixed, and then we maximize Wj and W2. 
The analysis in this first step is the same as in refs. [2, 
5-8] : therefore we can omit the details. For the part 
contained between TH and TL1 we find that the optimal 
Tm temperature is : 

TH,,opt = (THTL,) '/2 (37) 
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THC 

TH 

TL 

TLC [ ~  -_2 

QH / THC / 

l i l  

QH ! TH ., 

QL/TL / 

QL / TLC 

Q/T 

flow 
of 

entropy 

I \  

a b c 

Fig. 8. The flow and growth of the entropy stream through a refrigeration plant operating at maximum 
refrigeration load. 

TH T H 

THC 

TLC 

U H A H ~ 7 7 Q H  

(c) 

ULAL~ QL 

----o-W 

TH1 

TL1 

TL" T L 

UHAH ~ Q H  

(C) 

UMAM~[zQM 

(C) 

UL AL ~7 QL 

~ W  1 

~ W  2 

a b 

Fig. 9. (a) Power plant with two heat exchangers. (b) Combined-cycle power plant with three heat 
exchangers. 
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and that the corresponding maximum power output 
of the upper cycle is : 

W, = Un4&[1-($)li2]i. (38) 

For the part contained between TL, and T,_ the 
optimization rulmes are known from refs. [3,5], namely 
(TH2/TL2)opt = (T,,/T,)“‘, and from refs. [2, 81, 
specifically UbfAM = U,A,. The corresponding 
maximum power output of the lower cycle is : 

w, = $,A,T,, [l- ($)‘:‘I’. (39) 

In the second step of the analysis we pursue the 
maximization of the sum W, + W, with respect to two 
parameters, TLI and the relative size of CJ,A,. By 
adding equations (38) and (39) we obtain : 

TL. I,2 2 

-- (>I TH 
(40) 

Maximizing this ,with respect to TL,/TH we find : 

2UuAn + U,A,(T,/T”)“* 

2UHAH + U,A, 
(41) 

and 

2 
w,+w2 = 

( 

CAL+ UHA” 
L)’ TH [&(?$]1. 

(42) 

Finally, we maximize W, + W, with respect to U,A,/ 
UA while noting that the constraint (36) now reads 
UA = U,A, + 2C’,A,. The result is : 

W&h,t = $4 (43) 

which means that the UA inventory must be divided 
equally between U,A,, U,A, and U,A,. The 
maximum combined power output is : 

W,+W2 =;UAT+($)li2T. (44) 

The conclusion that UA must be divided equally 
between all the heat exchangers is not too surprising, 
because when there are only two heat exchangers [Fig. 
9(a)] the same UA allocation rule applies. Surprising 
is that the efficiency of the combined-cycle optimized 
in equation (44), 

(45) 

is the same as the efficiency of the original power plant 
of Fig. 9(a). Rubin and Andresen [20] had found the 
same efficiency formula. Equation (45) is surprising, 
because one of the main reasons for the development 

of combined-cycle power plants is the desire to 
increase the energy conversion efficiency (e.g. ref. [2], 
pp. 450454). In conclusion, when the total heat ex- 
change inventory is fixed and the design is optimized 
for maximum power, the Novikov-Curzon-Ahlborn 
efficiency characterizes both plants, Fig. 9(a) and (b). 

Another interesting result is that the maximum 
power output of the combined-cycle plant, equation 
(44), is considerably smaller than the corresponding 
value of the single-cycle power plant of Fig. 9(a) (e.g. 
ref. [2], p. 410) : 

W=+UATH[1-($j’2jt (46) 

The ratio between equations (44) and (46) is 419, 
which is a new result. To understand it, we note that 
when we switch from Fig. 9(a) to Fig. 9(b) and hold 
UA constant, the allocation of one-third of UA to 
the new heat exchanger (U,A,) means that we must 
reduce U,A, and ULA,. This in turn leads to a smaller 
heat input for the power plant of Fig. 9(b). Another 
reason is that in Fig. 9(a) the inner compartment is 
reversible, while in Fig. 9(b) that compartment 
tains the irreversibility due to the middle 
exchanger U,A,. 

con- 
heat 

8. POWER PLANT AS AN INSULATION 

BETWEEN ITS HEAT SOURCE AND THE 

AMBIENT 

In this section we reconsider the maximization of 
the power output in a plant with direct heat leak 
to the ambient, Fig. 5. We focus exclusively on the 
irreversibility associated with the by-pass heat leak Qi, 
and assume that the irreversibilities of the two heat 
exchangers are negligible (note that this is the reverse 
of the assumption made in Section 5). The resulting 
power plant model is shown in Fig. 10(a). The power 
plant has two compartments, the by-pass thermal con- 
ductance from TH to TL, and the rest of the plant (the 
actual cycle), which is irreversibility free. The total 
heat input to the power plant, Qn, is divided between 
the power producing compartment, QeH, and the leaky 
insulation, Q,n. 

The question, again, is under what conditions is the 
total power output W maximum? Consider first the 
heat leak through the insulation, and the physical 
constraint that the insulation thickness (LJ, cross- 
section (AJ, and effective thermal conductivity (k,) 
are fixed. If, as in the model of Fig. 5, the heat leak Q, 
is conserved from TH to TL, then the internal con- 
ductance C, mentioned in Section 4 is simply 
C, = k,A,/Li. In general, however, the heat leak may 
vary across the insulation, Q, = Qi(T), because some 
of the heat leak may be intercepted (and used) by the 
reversible power cycle (see ref. [l], Chap. 9). This 
possibility is illustrated in the detail of Fig. IO(b). 

The total power that the reversible compartment 
can extract from the insulation is : 
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x•QH 
~ 7  Qilt x ~ Q e H  

T H TH 

TL 

(c) ~ W  

T 

TL 

a b 

Fig. 10. (a) Power plant with by-pass heat leak to the ambient. (b) The extraction of power from the heat 
that flows through the internal conductance. 

l~i= f~ydl4"ri-~- f~y (1-~)dai. (47) 

At every intermediate temperature level T the heat 
leak is driven by the local temperature gradient, 

k, Ai d T  
ai  = • d x  (48) 

where x is the position in the insulation, x = 0 at 
T = TL, and x = Li at T = Tn. Equation (48) can be 
integrated across the insulation, to obtain the physical 
constraint : 

L i = rI:' d__T (constant, Ci- i) (49) 
kiAi Jr L Oi 

where it is assumed that k~ is temperature independent. 
The problem consists of finding the function Qi(T) 
that maximizes the W~ integral (47) subject to the 
integral constraint (49). The solution is readily avail- 
able by variational calculus (e.g. ref. [2], p. 722): 
therefore we list only the results for the optimal heat 
leak function and the maximum Wi, 

Qi,opt- C, In (~---EnL) T (50) 

Wire = C~ln TH -- TL -- TL In -~L " 

Equation (51) represents the maximum power that 
can be extracted from the insulation, i.e. from the 
internal conductance Cj. At this stage, it is instructive 
to compare the maximum power Wire to the heat leak 
received by C~ from TH, namely QiH,opt = 
C~ln(TIa/TL)TH. The ratio of these quantities is the 
efficiency of Cj at maximum power, 

//l/ira T L TL //TL~ 
r/i QiH,opt -- 1 -- ~ + ~H In ~ ) ~  (52) 

which has been plotted as 1 -r/~ vs TL/TH in Fig. 11. 
This is an important plot because it shows that ~]i 
is comparable with the maximum power efficiency 
derived by Novikov and Curzon and Ahlborn for the 
model of Fig. 9(a), namely equation (45). The dashed 
line is the Carnot efficiency l - r / =  TL/T H. It was 
shown in ref. [3], and in an expanded way in ref. 
[2], that equation (45) agrees approximately with the 
reported efficiencies of power plants in operation. The 
ten points plotted in Fig. 11 reproduce the reported 
efficiencies compiled in ref. [2]. The figure shows that 
equation (52) also agrees with the reported data. 

What we have achieved in this section is a new 
thermodynamic interpretation of the design and oper- 
ation of actual power plants. The agreement between 
equation (52) and reported data suggests that an 
actual power plant may be viewed as an obstacle to 
the direct heat transfer from the source TH to the sink 
TL, i.e. an 'insulation' designed to produce maximum 
power when its overall size (Ci) is constrained. Indeed, 
a power plant acts as an insulation between its heat 
source and heat sink in the same way that a refriger- 
ation plant insulates its coldest compartment from the 
ambient. 

9. POWER PLANT WITH BY-PASS HEAT LEAK 
TO THE AMBIENT 

We can now return to the model of Fig. 10(a), in 
which the internal conductance Ci is in parallel with a 
reversible cycle. Let us assume that the conductance 
Ci has been optimized according to equations (50), 
(51) and Fig. 10(b). This means that in addition to 
~im listed in equation (51), the power plant delivers 
the power We=QeH(1--TL/TH),  where QeH= 
QH- QiH,opt. The total power output (W = W~m + We) 
can be nondimensionalized as an overall efficiency 
ratio, 
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Fig. I I. The maximum-power efficiency of a power plant viewed as an insulation between its heat source 
and heat sink, equation (52). 

W=CiIn(Tr~']FTH--I--In(-T~L)] QH \ TL,/LTL 

~T~ T. 

where the overall heat input QH is fixed, and ~ is the 
nondimensional internal conductance, 

Ci --  C iTL  (54)  
Q. 

It can be shown numerically that the total power 
(53) has a maximum with respect to Tr~/TL, i.e. with 
respect to TH since TL is fixed. The power is zero in 
the limit Ta = Tt. It increases as TH becomes greater 

than TL : however, when Tn is high enough the power 
starts to decrease because an increasing fraction of 
Qn flows through Ci. The existence of such a power 
maximum was noted earlier [21] (also in ref. [1], p. 
44), where the heat leak was constant as it flowed 
through the conductance. In the present case, the heat 
flow through the conductance generates the maximum 
power of which it is capable, and the maximum W is 
the absolute limit that the power cycle with by-pass 
conductance can reach. 

The numerical results are shown in Fig. 12, in which 
represents the size of the insulation (Ci) relative to 

the overall size of the plant (QH). For  each physical 
configuration ~ ,  there is an optimal hot-end tem- 
perature (T~/TL)opt, and a maximum total power out- 

TH, opt 

TL 

I I I I I I I I I I ,I I I I 0. I 

0.05 O. I 

Fig. 12. The  opt imal  ho t -end  t empera tu re  and  the m a x i m u m  power  ou tpu t  o f  a p lan t  with by-pass  heat  
leak to the ambien t  [Fig. 10(a)]. 
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put (W/Qu)m. The heat source temperature and the 
maximum power decrease as the relative size of  the 
internal conductance increases. 

10. CONCLUDING REMARKS 

In this paper, a sequence of  eight problems (Sec- 
tions 2-9) were presented in which various instal- 
lations with heat transfer irreversibilities were opti- 
mized by arranging the heat transfer hardware. The 
basic assumption was that the overall inventory of  
heat transfer hardware is constrained (e.g. total area 
A, thermal conductance UA, internal conductance C1). 
The results were discussed individually at the end of  
each problem. 

The general conclusion that unites these results is 
that the power output  of  a power plant can be max- 
imized by dividing the finite supply of  heat transfer 
equipment among the heat transfer components  
involved. At the fundamental level, this represents a 
step beyond what is currently done with the method 
of  entropy generation minimization or finite-time 
thermodynamics. The engineering implications of  this 
step are that if the hardware inventory can be allo- 
cated optimally in simple models such as Figs, 1, 2, 5, 
9 and 10, then there is an opportunity to distribute 
the hardware optimally in the design of  actual, much 
more complicated, installations. The mission of  simple 
models and simple theories is to show the way, i.e. to 
uncover new opportunities for  the applied work that will 

.follow. 
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